Browse By Unit
Dalia Savy
Anika P
Dalia Savy
Anika P
Atoms are the most basic unit of matter. When several atoms interact with each other, they can form molecules. Depending on how the electrons of these atoms interact, a covalent bond or an ionic bond could form.
Everything in chemistry strives to become the most stable possible. Atoms do the same thing! Atoms bond in order to reach a more stable, lower energy state. ⚖️
Valence electrons are typically involved in bonding, not core electrons! They play a crucial role in the bonding process and determine the chemical properties of the resulting molecule. Here is a quick review of everything we learned about valence electrons in unit one:
Coulomb's Law comes in handy when you want to measure the attraction between two atoms. It states that the strength of forces that hold atoms together depends on two factors:
Ionic bonds are formed by the transfer of valence electrons from atom to atom, usually from a metal to a nonmetal. Let's take a look at an example of an ionic bond between a sodium and chloride atom! 🤓
Na(s) + ½ Cl2(g) → NaCl(s)
NaCl, a brittle salt with a high melting point was formed in this chemical reaction. Ionic bonds are held together not by shared electrons or a direct bond, but rather through electromagnetic forces that hold positive and negative ions together. These electromagnetic forces are so strong that it takes lots of energy to break them apart, hence the high boiling and melting points.
Ionic compounds also form a crystal lattice of ions, giving them their rigidity. In a crystal lattice, ions are arranged in a repeating, three-dimensional pattern. This crystal lattice is, again, held by strong electrostatic forces. This characteristic of ionic molecules makes them generally good electrical conductors. When an ionic compound is melted or dissolved in water, the ions can move freely within the crystal lattice structure, producing electricity! ⚡
Remember that Coulomb's Law states that greater charges and smaller distances lead to the strongest attractions.
When asked which ionic compound would have a higher melting point, always look for differences in charge and size. The higher the charge of the ion, the stronger the negative-positive attraction is and the more energy it takes to break the bond. This increases both the melting and boiling point. Same goes for size!
TIP - Always look for differences in charge first; they have a greater impact on melting points.
In covalent bonds, electrons are shared between two or more atoms (typically nonmetals). There are two different types of covalent bonds based on the electronegativities of the atoms involved:
Valence electrons shared between atoms of unequal electronegativity constitute a polar covalent bond, like in a water molecule. Hydrogen has an electronegativity of 2.2 while oxygen has an electronegativity of 3.44. Therefore, oxygen attracts electrons more strongly and will pull the electrons towards it. This unequal distribution of charge leads to oxygen developing a partial negative charge. This difference in electronegativity leads to bond dipoles, which are covered more in the next unit.
For now, just remember that greater differences in electronegativity within a bond lead to greater bond dipoles!
If a solid has a high melting point and is a good conductor of heat and electricity when dissolved in water, it is most likely an ionic compound. This is because of the concept of a free-flowing ion that generates electricity.
If a solid has a low melting point and doesn't conduct electricity in any state, it is most likely a molecular compound (which has covalent bonds).
There is one more circumstance: If a solid has a high melting point and doesn't conduct electricity in any state, it is a network solid made up of covalent bonds. Don't worry about this yet, it's covered in future units :).
<< Hide Menu
Dalia Savy
Anika P
Dalia Savy
Anika P
Atoms are the most basic unit of matter. When several atoms interact with each other, they can form molecules. Depending on how the electrons of these atoms interact, a covalent bond or an ionic bond could form.
Everything in chemistry strives to become the most stable possible. Atoms do the same thing! Atoms bond in order to reach a more stable, lower energy state. ⚖️
Valence electrons are typically involved in bonding, not core electrons! They play a crucial role in the bonding process and determine the chemical properties of the resulting molecule. Here is a quick review of everything we learned about valence electrons in unit one:
Coulomb's Law comes in handy when you want to measure the attraction between two atoms. It states that the strength of forces that hold atoms together depends on two factors:
Ionic bonds are formed by the transfer of valence electrons from atom to atom, usually from a metal to a nonmetal. Let's take a look at an example of an ionic bond between a sodium and chloride atom! 🤓
Na(s) + ½ Cl2(g) → NaCl(s)
NaCl, a brittle salt with a high melting point was formed in this chemical reaction. Ionic bonds are held together not by shared electrons or a direct bond, but rather through electromagnetic forces that hold positive and negative ions together. These electromagnetic forces are so strong that it takes lots of energy to break them apart, hence the high boiling and melting points.
Ionic compounds also form a crystal lattice of ions, giving them their rigidity. In a crystal lattice, ions are arranged in a repeating, three-dimensional pattern. This crystal lattice is, again, held by strong electrostatic forces. This characteristic of ionic molecules makes them generally good electrical conductors. When an ionic compound is melted or dissolved in water, the ions can move freely within the crystal lattice structure, producing electricity! ⚡
Remember that Coulomb's Law states that greater charges and smaller distances lead to the strongest attractions.
When asked which ionic compound would have a higher melting point, always look for differences in charge and size. The higher the charge of the ion, the stronger the negative-positive attraction is and the more energy it takes to break the bond. This increases both the melting and boiling point. Same goes for size!
TIP - Always look for differences in charge first; they have a greater impact on melting points.
In covalent bonds, electrons are shared between two or more atoms (typically nonmetals). There are two different types of covalent bonds based on the electronegativities of the atoms involved:
Valence electrons shared between atoms of unequal electronegativity constitute a polar covalent bond, like in a water molecule. Hydrogen has an electronegativity of 2.2 while oxygen has an electronegativity of 3.44. Therefore, oxygen attracts electrons more strongly and will pull the electrons towards it. This unequal distribution of charge leads to oxygen developing a partial negative charge. This difference in electronegativity leads to bond dipoles, which are covered more in the next unit.
For now, just remember that greater differences in electronegativity within a bond lead to greater bond dipoles!
If a solid has a high melting point and is a good conductor of heat and electricity when dissolved in water, it is most likely an ionic compound. This is because of the concept of a free-flowing ion that generates electricity.
If a solid has a low melting point and doesn't conduct electricity in any state, it is most likely a molecular compound (which has covalent bonds).
There is one more circumstance: If a solid has a high melting point and doesn't conduct electricity in any state, it is a network solid made up of covalent bonds. Don't worry about this yet, it's covered in future units :).
© 2025 Fiveable Inc. All rights reserved.