Browse By Unit
Jed Quiaoit
Jed Quiaoit
In chemical reactions, the transformation of reactants into products often involves multiple intermediate steps, known as elementary reactions. These elementary reactions can be combined to describe the overall reaction through a chemical equation, which shows the reactants, products, and their respective stoichiometric coefficients.
Having a comprehensive understanding of the energy changes that occur during each of the elementary reactions in a mechanism is crucial for constructing a reaction energy profile for a multistep reaction.
By having knowledge of the energetics of each elementary reaction in the mechanism, one can determine the highest energy barrier or transition state, the activation energy required to overcome this barrier, and the overall energy change that occurs during the reaction. This information can then be incorporated into the energy profile, which allows for a better understanding of the energetics of the reaction and the factors that influence its rate and outcome. ⚡
Intermediates are species that are formed during the reaction and then go on to react further to form the final products. They are not directly involved in the overall reaction and are usually not present at the beginning or end of the reaction.
Products are the final substances formed after the reaction has taken place. They are written on the right-hand side of a chemical equation.
An example of a reaction involving reactants, intermediates, and products is the reaction between hydrogen gas (H₂) and nitrogen gas (N₂) to form ammonia (NH₃) through the Haber process:
<< Hide Menu
Jed Quiaoit
Jed Quiaoit
In chemical reactions, the transformation of reactants into products often involves multiple intermediate steps, known as elementary reactions. These elementary reactions can be combined to describe the overall reaction through a chemical equation, which shows the reactants, products, and their respective stoichiometric coefficients.
Having a comprehensive understanding of the energy changes that occur during each of the elementary reactions in a mechanism is crucial for constructing a reaction energy profile for a multistep reaction.
By having knowledge of the energetics of each elementary reaction in the mechanism, one can determine the highest energy barrier or transition state, the activation energy required to overcome this barrier, and the overall energy change that occurs during the reaction. This information can then be incorporated into the energy profile, which allows for a better understanding of the energetics of the reaction and the factors that influence its rate and outcome. ⚡
Intermediates are species that are formed during the reaction and then go on to react further to form the final products. They are not directly involved in the overall reaction and are usually not present at the beginning or end of the reaction.
Products are the final substances formed after the reaction has taken place. They are written on the right-hand side of a chemical equation.
An example of a reaction involving reactants, intermediates, and products is the reaction between hydrogen gas (H₂) and nitrogen gas (N₂) to form ammonia (NH₃) through the Haber process:
© 2025 Fiveable Inc. All rights reserved.