Browse By Unit
Krish Gupta
Daniella Garcia-Loos
Krish Gupta
Daniella Garcia-Loos
The very first unit of AP Physics 2 begins with a look at fluids. In the first year physics course, we mostly looked into the kinematics, dynamics, and interactions of solids. We often ignored the internal aspects of the system and considered the object as ideal and non-deformable. We begin this course by looking at fluids, which consist of gases and liquids, and their interactions🌪️
As you already know, matter mostly comes in three forms: solids, liquids, and gases. In Physics 1, we mostly dealt with solids. In this unit, we shift our focus to liquids. 🚿
You can remember a fluid as anything that flows. Therefore, both liquids and gases are considered fluids.
One thing to remember about fluids is that they do not have a definite shape. Unlike solids, liquids and gases can change their shape based on the container or the area we bind them in.
Example of fluids: water (most common), oil, oxygen, helium, air etc.
Fluids have an internal structure that we cannot ignore. Therefore, the type of liquid we have will be very important for our calculations and processes!
Here are some key points to remember about fluid systems:
Example Problem:
How do the shape and size of a container affect the behavior of a fluid inside it? For example, how does the volume of a container influence the pressure that a fluid exerts on the walls of the container?
Another important distinction that comes up in this section is the idea of object vs system. An object does not have an incredibly precise definition, but it can be generalized as a collection of matter. A system, then, can be said to be a collection of objects.
Since objects make up systems, the properties of the objects determine the behavior of the system. These properties refer to the internal structure of the system. The internal structure plays a much bigger role when discussing the physics of fluids then it does with solids.
In some cases, the internal structure of the system is not extremely important to the macroscopic behavior of a certain model. In such a case, the system itself can be thought of as an object.
Here are some key points about the difference between an object and a system:
Let’s try to look at an example.
Let’s say we have a balloon filled with some gas. The objects in this example would be the gas in the balloon and the balloon itself. The gas-balloon entity would be our system. If we were trying to just model the general behavior of the system, for example finding the temperature of the system, we could just say that our system - the balloon-gas combination - is our object.
This semantics discourse is not incredibly important but will enhance your overall ability to understand physics and its fundamentals.
Some common liquids you will be working with include water, salt water, and oil. Be careful salt water and water have different densities and the AP exam likes to ask about both!
<< Hide Menu
Krish Gupta
Daniella Garcia-Loos
Krish Gupta
Daniella Garcia-Loos
The very first unit of AP Physics 2 begins with a look at fluids. In the first year physics course, we mostly looked into the kinematics, dynamics, and interactions of solids. We often ignored the internal aspects of the system and considered the object as ideal and non-deformable. We begin this course by looking at fluids, which consist of gases and liquids, and their interactions🌪️
As you already know, matter mostly comes in three forms: solids, liquids, and gases. In Physics 1, we mostly dealt with solids. In this unit, we shift our focus to liquids. 🚿
You can remember a fluid as anything that flows. Therefore, both liquids and gases are considered fluids.
One thing to remember about fluids is that they do not have a definite shape. Unlike solids, liquids and gases can change their shape based on the container or the area we bind them in.
Example of fluids: water (most common), oil, oxygen, helium, air etc.
Fluids have an internal structure that we cannot ignore. Therefore, the type of liquid we have will be very important for our calculations and processes!
Here are some key points to remember about fluid systems:
Example Problem:
How do the shape and size of a container affect the behavior of a fluid inside it? For example, how does the volume of a container influence the pressure that a fluid exerts on the walls of the container?
Another important distinction that comes up in this section is the idea of object vs system. An object does not have an incredibly precise definition, but it can be generalized as a collection of matter. A system, then, can be said to be a collection of objects.
Since objects make up systems, the properties of the objects determine the behavior of the system. These properties refer to the internal structure of the system. The internal structure plays a much bigger role when discussing the physics of fluids then it does with solids.
In some cases, the internal structure of the system is not extremely important to the macroscopic behavior of a certain model. In such a case, the system itself can be thought of as an object.
Here are some key points about the difference between an object and a system:
Let’s try to look at an example.
Let’s say we have a balloon filled with some gas. The objects in this example would be the gas in the balloon and the balloon itself. The gas-balloon entity would be our system. If we were trying to just model the general behavior of the system, for example finding the temperature of the system, we could just say that our system - the balloon-gas combination - is our object.
This semantics discourse is not incredibly important but will enhance your overall ability to understand physics and its fundamentals.
Some common liquids you will be working with include water, salt water, and oil. Be careful salt water and water have different densities and the AP exam likes to ask about both!
© 2024 Fiveable Inc. All rights reserved.