Browse By Unit
5 min read•june 18, 2024
Krish Gupta
Daniella Garcia-Loos
Krish Gupta
Daniella Garcia-Loos
You have most likely already learned about the conservation of energy in a previous course or worked with the ideas of kinetic energy and potential energy. The same principles apply to fluids, with a few small differences. The main difference is that the fluids we work with have densities and volumes, while with solids you mostly deal with masses.
Using the conservation of energy principle and making substitutions using the fact that density = mass/volume we arrive at a formula called Bernoulli’s equation.
We need Bernoulli's equation to solve this problem:
P1 + 1/2ρv1 + ρgh1 = P2 + 1/2ρv2 + ρgh2
The problem statement doesn't tell us that the height changes, so we can remove the last term on each side of the expression, then arrange to solve for the final pressure:
P2 = P1 + 12ρ(v1−v2)
We know the initial pressure, so we still need to calculate the initial and final velocities. We'll use the continuity equation:
V=vA
Rearrange for velocity:
v=V/A
Where A is the cross-sectional area. We can calculate this for each diameter of the tube:
A1 = πd24 = π (1m) 24 = π4m
A2 = πd24 = π (0.5m) 24 = π16m
Now we can calculate the velocity for each diameter:
v1 = 2m3sπ4m = 8πms
v2 = 2m3sπ16m = 32πms
Now we have all of the values needed for Bernoulli's equation, allowing us to solve:
P2 = (80,000Pa) + 12(1000kgm3) (8π−32π)
P2 = (80,000Pa) + (500)(−24π) = 76.2kPa
A special case of this is a leaking tank.
The flow rate is defined as the area multiplied by the velocity of the liquid. More to come on this in the final section.
Since the top has a much bigger area, its velocity is almost negligible and hence we ignore the kinetic energy at the top. Also, since both the top and the leak are exposed to the atmosphere we ignore the initial pressures.
Here are some key things to remember about the conservation of energy in fluid flow:
Example Problem:
A tank contains water at a depth of 2 meters. A pump is used to pump the water to a height of 10 meters above the tank. The pump has a power output of 5 kW. How much work is done by the pump in lifting the water to the top of the tank?
Solution:
To solve this problem, we will use the conservation of energy principle to calculate the work done by the pump.
First, we need to calculate the change in the potential energy of the water as it is lifted from the bottom of the tank to the top of the tank. The potential energy of the water is equal to its mass times the acceleration due to gravity times its height above a reference point.
The mass of the water can be calculated as the volume of the water times its density:
m = V * ρ
The volume of the water can be calculated as the area of the tank times the depth of the water:
V = A * h
Substituting these expressions into the equation for potential energy, we get:
ΔPE = (A * h * ρ) * g * (h2 - h1)
Where h1 is the initial height of the water (2 meters) and h2 is the final height of the water (10 meters).
Next, we need to calculate the work done by the pump. The work done by the pump is equal to the power output of the pump times the time it takes to lift the water to the top of the tank.
W = P * t
We can use the equation for work to solve for the time it takes to lift the water to the top of the tank:
t = W / P
Substituting the values from the problem into the equation for work, we get:
t = (ΔPE) / P
Substituting the expression for the change in potential energy into the equation for time, we get:
t = [(A * h * ρ) * g * (h2 - h1)] / P
Substituting the values from the problem into this equation, we get:
t = [(A * 2 * ρ) * 9.81 * (10 - 2)] / 5
Solving this equation, we find that it takes approximately 7.84 seconds for the pump to lift the water to the top of the tank.
Therefore, the work done by the pump is equal to 5 kW * 7.84 s = 39.2 kJ.
<< Hide Menu
5 min read•june 18, 2024
Krish Gupta
Daniella Garcia-Loos
Krish Gupta
Daniella Garcia-Loos
You have most likely already learned about the conservation of energy in a previous course or worked with the ideas of kinetic energy and potential energy. The same principles apply to fluids, with a few small differences. The main difference is that the fluids we work with have densities and volumes, while with solids you mostly deal with masses.
Using the conservation of energy principle and making substitutions using the fact that density = mass/volume we arrive at a formula called Bernoulli’s equation.
We need Bernoulli's equation to solve this problem:
P1 + 1/2ρv1 + ρgh1 = P2 + 1/2ρv2 + ρgh2
The problem statement doesn't tell us that the height changes, so we can remove the last term on each side of the expression, then arrange to solve for the final pressure:
P2 = P1 + 12ρ(v1−v2)
We know the initial pressure, so we still need to calculate the initial and final velocities. We'll use the continuity equation:
V=vA
Rearrange for velocity:
v=V/A
Where A is the cross-sectional area. We can calculate this for each diameter of the tube:
A1 = πd24 = π (1m) 24 = π4m
A2 = πd24 = π (0.5m) 24 = π16m
Now we can calculate the velocity for each diameter:
v1 = 2m3sπ4m = 8πms
v2 = 2m3sπ16m = 32πms
Now we have all of the values needed for Bernoulli's equation, allowing us to solve:
P2 = (80,000Pa) + 12(1000kgm3) (8π−32π)
P2 = (80,000Pa) + (500)(−24π) = 76.2kPa
A special case of this is a leaking tank.
The flow rate is defined as the area multiplied by the velocity of the liquid. More to come on this in the final section.
Since the top has a much bigger area, its velocity is almost negligible and hence we ignore the kinetic energy at the top. Also, since both the top and the leak are exposed to the atmosphere we ignore the initial pressures.
Here are some key things to remember about the conservation of energy in fluid flow:
Example Problem:
A tank contains water at a depth of 2 meters. A pump is used to pump the water to a height of 10 meters above the tank. The pump has a power output of 5 kW. How much work is done by the pump in lifting the water to the top of the tank?
Solution:
To solve this problem, we will use the conservation of energy principle to calculate the work done by the pump.
First, we need to calculate the change in the potential energy of the water as it is lifted from the bottom of the tank to the top of the tank. The potential energy of the water is equal to its mass times the acceleration due to gravity times its height above a reference point.
The mass of the water can be calculated as the volume of the water times its density:
m = V * ρ
The volume of the water can be calculated as the area of the tank times the depth of the water:
V = A * h
Substituting these expressions into the equation for potential energy, we get:
ΔPE = (A * h * ρ) * g * (h2 - h1)
Where h1 is the initial height of the water (2 meters) and h2 is the final height of the water (10 meters).
Next, we need to calculate the work done by the pump. The work done by the pump is equal to the power output of the pump times the time it takes to lift the water to the top of the tank.
W = P * t
We can use the equation for work to solve for the time it takes to lift the water to the top of the tank:
t = W / P
Substituting the values from the problem into the equation for work, we get:
t = (ΔPE) / P
Substituting the expression for the change in potential energy into the equation for time, we get:
t = [(A * h * ρ) * g * (h2 - h1)] / P
Substituting the values from the problem into this equation, we get:
t = [(A * 2 * ρ) * 9.81 * (10 - 2)] / 5
Solving this equation, we find that it takes approximately 7.84 seconds for the pump to lift the water to the top of the tank.
Therefore, the work done by the pump is equal to 5 kW * 7.84 s = 39.2 kJ.
© 2024 Fiveable Inc. All rights reserved.