Browse By Unit
5 min read•june 18, 2024
Krish Gupta
Daniella Garcia-Loos
Krish Gupta
Daniella Garcia-Loos
In this section, we finally get to the 2nd law of Thermodynamics. This section is heavy on theory and understanding of math rather than its application. This section might be one of the hardest to understand because it deals with intangible quantities, so just try your best🔥
Entropy is disorder. That is the most surface level definition ever. Some people also define entropy as molecular freedom. You can also define entropy as randomness or lack of predictability. Also the universe favors entropy. The universe wants more disorder👓
The 2nd Law of Thermodynamics states that the entropy of the system and its surroundings will never decrease. So the entropy or disorderness can either stay the same or increase.
Calculating entropy is not tested on the exam but we will learn briefly about it anyways in case you study it in college. Entropy at a point is the ratio between heat and temperature and is represented by the letter S. S=Q/T
There are two types of thermodynamic processes we can think about based on entropy.
In thermodynamics, the tendency of an isolated system to move toward a state of higher disorder is known as the "arrow of time."
These topics are not quite tested on the AP exam anymore but used to show up on the exam several years ago and are taught in several college courses so we will quickly go over them.
Here are some key points about heat engines:
Here are some key points about heat pumps and refrigerators:
Example Problem:
Explain how the second law of thermodynamics is related to the state function called entropy and how entropy behaves in reversible and irreversible processes. In your explanation, provide an example of a process that is reversible and another that is irreversible, and explain how the entropy changes in each case.
To answer this question, you could describe the second law of thermodynamics, which states that the total entropy of a closed system will always increase over time. Define entropy as a measure of the disorder or randomness of a system, and explain how it is a state function, meaning that it depends only on the state of the system and not on the path taken to reach that state.
An example of a reversible process, such as a gas expanding and contracting in a cylinder, and explain how the entropy changes in a reversible process. Give an example of an irreversible process, such as a gas expanding into a vacuum, and explain how the entropy changes in an irreversible process. Explain how the increase in entropy in irreversible processes is what drives the arrow of time and why the past and future are fundamentally different.
<< Hide Menu
5 min read•june 18, 2024
Krish Gupta
Daniella Garcia-Loos
Krish Gupta
Daniella Garcia-Loos
In this section, we finally get to the 2nd law of Thermodynamics. This section is heavy on theory and understanding of math rather than its application. This section might be one of the hardest to understand because it deals with intangible quantities, so just try your best🔥
Entropy is disorder. That is the most surface level definition ever. Some people also define entropy as molecular freedom. You can also define entropy as randomness or lack of predictability. Also the universe favors entropy. The universe wants more disorder👓
The 2nd Law of Thermodynamics states that the entropy of the system and its surroundings will never decrease. So the entropy or disorderness can either stay the same or increase.
Calculating entropy is not tested on the exam but we will learn briefly about it anyways in case you study it in college. Entropy at a point is the ratio between heat and temperature and is represented by the letter S. S=Q/T
There are two types of thermodynamic processes we can think about based on entropy.
In thermodynamics, the tendency of an isolated system to move toward a state of higher disorder is known as the "arrow of time."
These topics are not quite tested on the AP exam anymore but used to show up on the exam several years ago and are taught in several college courses so we will quickly go over them.
Here are some key points about heat engines:
Here are some key points about heat pumps and refrigerators:
Example Problem:
Explain how the second law of thermodynamics is related to the state function called entropy and how entropy behaves in reversible and irreversible processes. In your explanation, provide an example of a process that is reversible and another that is irreversible, and explain how the entropy changes in each case.
To answer this question, you could describe the second law of thermodynamics, which states that the total entropy of a closed system will always increase over time. Define entropy as a measure of the disorder or randomness of a system, and explain how it is a state function, meaning that it depends only on the state of the system and not on the path taken to reach that state.
An example of a reversible process, such as a gas expanding and contracting in a cylinder, and explain how the entropy changes in a reversible process. Give an example of an irreversible process, such as a gas expanding into a vacuum, and explain how the entropy changes in an irreversible process. Explain how the increase in entropy in irreversible processes is what drives the arrow of time and why the past and future are fundamentally different.
© 2024 Fiveable Inc. All rights reserved.