Browse By Unit
Krish Gupta
Daniella Garcia-Loos
Krish Gupta
Daniella Garcia-Loos
Charge is a fundamental property of subatomic particles. There are 2 types of charges: positive and negative.
A proton has a positive charge, while an electron is negatively charged. The amount of charge on an object can be measured in either Coulombs (C for large amounts of charge or elementary charges (e) for small amounts of charge. If you've taken chemistry already, you've most likely talked about the charge of atoms or ions as 1, 2, etc. ✨ These charges are measured in elementary charges. For this course, most of the time, we'll be dealing with "larger" amounts of charge and will use Coulombs as our primary unit of charge.
Particle/Object | Charge (Coulombs) | Charge (Elementary Charges) |
Proton | +1.6x10^-19 C | +1 e |
Electron | -1.6x10^-19 C | -1 e |
Neutron | 0 | 0 |
Simply put, "likes repel, opposites attract". 2 positive charges will repel each other, and likewise, 2 negative charges repel. Different charges (+ and -) will attract.
Try using the PhET simulation to see how a charged balloon can stick to the sweater as well as to the wall.
The law of electrostatics is a set of principles that describe the behavior of electric charges at rest. Here are some key points about the law of electrostatics:
Type of Charge | Attracted to | Repelled by |
Positive Charge (+) | Negative & Neutral | Positive |
Negative Charge (-) | Positive & Neutral | Negative |
Neutral Object | Positive & Negative | Neither |
A metal paper clip is attracted to a positively charged metal ball ⚽️ . What could be the charge on the paper clip?
Negative or neutral. As long as the ball is positive it will attract either a negatively charged or a neutral object!
Two charged particles are separated by a distance of 1 meter. The first particle has a charge of +3 Coulombs and the second particle has a charge of -4 Coulombs. What is the electric force between the two particles?
Solution:
According to Coulomb's law, the electric force between two charged particles is given by the equation: F = k*(q1*q2)/r^2, where F is the electric force, k is the Coulomb constant, q1 and q2 are the charges of the two particles, and r is the distance between the particles.
In this problem, the Coulomb constant is 8.988 x 10^9 N*m^2/C^2, the charges of the two particles are +3 Coulombs and -4 Coulombs, and the distance between the particles is 1 meter.
Therefore, the electric force between the two particles is: F = 8.988 x 10^9 Nm^2/C^2(3 Coulombs*(-4 Coulombs))/1 m^2 = -1.199 x 10^9 N
This means that the electric force between the two particles is -1.199 x 10^9 N.
A charged particle is placed in an electric field with a strength of 100 N/C. What is the electric force experienced by the particle if it has a charge of +2 Coulombs?
Solution:
The electric force experienced by a charged particle in an electric field is given by the equation: F = q*E, where F is the electric force, q is the charge of the particle, and E is the strength of the electric field.
In this problem, the charge of the particle is +2 Coulombs and the strength of the electric field is 100 N/C.
Therefore, the electric force experienced by the particle is: F = 2 Coulombs*100 N/C = 200 N
This means that the electric force experienced by the particle is 200 N.
A charged particle is placed in an electric field with a strength of 200 N/C. What is the electric potential at the location of the particle if it has a charge of +3 Coulombs?
Solution:
The electric potential at a location in an electric field is given by the equation: V = q*E, where V is the electric potential, q is the charge of the particle, and E is the strength of the electric field.
In this problem, the charge of the particle is +3 Coulombs and the strength of the electric field is 200 N/C.
Therefore, the electric potential at the location of the particle is: V = 3 Coulombs*200 N/C = 600 N/C
This means that the electric potential at the location of the particle is 600 N/C.
<< Hide Menu
Krish Gupta
Daniella Garcia-Loos
Krish Gupta
Daniella Garcia-Loos
Charge is a fundamental property of subatomic particles. There are 2 types of charges: positive and negative.
A proton has a positive charge, while an electron is negatively charged. The amount of charge on an object can be measured in either Coulombs (C for large amounts of charge or elementary charges (e) for small amounts of charge. If you've taken chemistry already, you've most likely talked about the charge of atoms or ions as 1, 2, etc. ✨ These charges are measured in elementary charges. For this course, most of the time, we'll be dealing with "larger" amounts of charge and will use Coulombs as our primary unit of charge.
Particle/Object | Charge (Coulombs) | Charge (Elementary Charges) |
Proton | +1.6x10^-19 C | +1 e |
Electron | -1.6x10^-19 C | -1 e |
Neutron | 0 | 0 |
Simply put, "likes repel, opposites attract". 2 positive charges will repel each other, and likewise, 2 negative charges repel. Different charges (+ and -) will attract.
Try using the PhET simulation to see how a charged balloon can stick to the sweater as well as to the wall.
The law of electrostatics is a set of principles that describe the behavior of electric charges at rest. Here are some key points about the law of electrostatics:
Type of Charge | Attracted to | Repelled by |
Positive Charge (+) | Negative & Neutral | Positive |
Negative Charge (-) | Positive & Neutral | Negative |
Neutral Object | Positive & Negative | Neither |
A metal paper clip is attracted to a positively charged metal ball ⚽️ . What could be the charge on the paper clip?
Negative or neutral. As long as the ball is positive it will attract either a negatively charged or a neutral object!
Two charged particles are separated by a distance of 1 meter. The first particle has a charge of +3 Coulombs and the second particle has a charge of -4 Coulombs. What is the electric force between the two particles?
Solution:
According to Coulomb's law, the electric force between two charged particles is given by the equation: F = k*(q1*q2)/r^2, where F is the electric force, k is the Coulomb constant, q1 and q2 are the charges of the two particles, and r is the distance between the particles.
In this problem, the Coulomb constant is 8.988 x 10^9 N*m^2/C^2, the charges of the two particles are +3 Coulombs and -4 Coulombs, and the distance between the particles is 1 meter.
Therefore, the electric force between the two particles is: F = 8.988 x 10^9 Nm^2/C^2(3 Coulombs*(-4 Coulombs))/1 m^2 = -1.199 x 10^9 N
This means that the electric force between the two particles is -1.199 x 10^9 N.
A charged particle is placed in an electric field with a strength of 100 N/C. What is the electric force experienced by the particle if it has a charge of +2 Coulombs?
Solution:
The electric force experienced by a charged particle in an electric field is given by the equation: F = q*E, where F is the electric force, q is the charge of the particle, and E is the strength of the electric field.
In this problem, the charge of the particle is +2 Coulombs and the strength of the electric field is 100 N/C.
Therefore, the electric force experienced by the particle is: F = 2 Coulombs*100 N/C = 200 N
This means that the electric force experienced by the particle is 200 N.
A charged particle is placed in an electric field with a strength of 200 N/C. What is the electric potential at the location of the particle if it has a charge of +3 Coulombs?
Solution:
The electric potential at a location in an electric field is given by the equation: V = q*E, where V is the electric potential, q is the charge of the particle, and E is the strength of the electric field.
In this problem, the charge of the particle is +3 Coulombs and the strength of the electric field is 200 N/C.
Therefore, the electric potential at the location of the particle is: V = 3 Coulombs*200 N/C = 600 N/C
This means that the electric potential at the location of the particle is 600 N/C.
© 2024 Fiveable Inc. All rights reserved.