Browse By Unit
6 min read•june 18, 2024
Krish Gupta
Daniella Garcia-Loos
Krish Gupta
Daniella Garcia-Loos
Electric Charge is a property of matter that causes it to feel a force in an electromagnetic field. Electric charge must be conserved. The entire topic of current and circuits is based upon the principle of conservation of charge. We learned about charge and its conservation in the last unit. In this unit, we will focus more on current and how it relates to theconservation of charge.
In Unit 3, we studied voltage and defined it as work per unit charge. There are 2 other important quantities used along with voltage to describe the features of a circuit: current and resistance.
A common analogy for how voltage, current, and resistance are related to each other is to think of an electric circuit like water flowing through a hose. Voltage is similar to the water pressure, current is similar to the amount of water that gets through the hose, and resistance is similar to mud or dirt that gets stuck in the hose and starts to clog it.
Conservation of electric charge refers to the principle that the total electric charge in a closed system remains constant over time. This means that electric charge can be transferred or distributed within the system, but the total amount of charge remains the same.
Here are some key points about conservation of electric charge:
Current is defined as the rate at which charge flows through a circuit. It's represented by the equation:
** Conventional Current is defined as the direction a positive charge carrier will travel. This may seem strange to us since chemistry tells us that the electrons are the mobile part of the atom. Nevertheless, there are several advantages to choosing a positive direction, since that aligns with our choices in direction when it comes to electric fields and potential differences (see Unit 1). **
On a microscopic level, current is also related to the drift velocity (vd) of the individual charge carriers. Drift velocity can be thought of as the average velocity of each charge carrier as it moves through a wire. In the image below, we're looking at the path of the electron as it moves through a wire.
Drift velocity is the average velocity of a charged particle, such as an electron, in an electric field. It is the velocity at which the charged particle would move if it were not subjected to any other forces or collisions.
Here are some key points about drift velocity:
A metal wire has a cross-sectional area of 1 square millimeter and is subjected to an electric field of 1000 volts per meter. The wire is made of a metal with a drift velocity of 1 millimeter per second for electrons. Calculate the electric current flowing through the wire.
Solution:
To solve this question, you would need to use the formula for electric current, which is I = qA vd, where I is the electric current, q is the electric charge of the charged particles (in this case, electrons), A is the cross-sectional area of the wire, and vd is the drift velocity of the charged particles. Using the given values, the electric current flowing through the wire would be:
I = (1.6 x 10^-19 C) * (1 mm^2) * (1 mm/s) = 1.6 x 10^-19 C/s = 1.6 x 10^-15 A
Note that the electric current is very small because the drift velocity of the electrons is very small and the electric charge of an electron is also very small.
Circuit Symbols & Measuring Tools 🛠️
To easily draw circuits, we use a variety of symbols to represent common components. Here are a few common ones, and there are many many more that are not used in AP 2 (although if you become an electrical engineer you'll use them!)
On the other hand, an ammeter is designed to measure the current flowing through a part of the circuit. Because it's going to be connected in series with the component it's measuring, the internal resistance of the ammeter is designed to be very small. Hooking up an ammeter or voltmeter in the wrong configuration can lead to short circuits or a meter that doesn't function at all. Be careful in your lab experiments, and check first before you connect them.
An ammeter is a device used to measure the electric current flowing in a circuit, while a voltmeter is a device used to measure the electric potential difference, or voltage, across two points in a circuit.
Here are some key points about ammeters and voltmeters:
<< Hide Menu
6 min read•june 18, 2024
Krish Gupta
Daniella Garcia-Loos
Krish Gupta
Daniella Garcia-Loos
Electric Charge is a property of matter that causes it to feel a force in an electromagnetic field. Electric charge must be conserved. The entire topic of current and circuits is based upon the principle of conservation of charge. We learned about charge and its conservation in the last unit. In this unit, we will focus more on current and how it relates to theconservation of charge.
In Unit 3, we studied voltage and defined it as work per unit charge. There are 2 other important quantities used along with voltage to describe the features of a circuit: current and resistance.
A common analogy for how voltage, current, and resistance are related to each other is to think of an electric circuit like water flowing through a hose. Voltage is similar to the water pressure, current is similar to the amount of water that gets through the hose, and resistance is similar to mud or dirt that gets stuck in the hose and starts to clog it.
Conservation of electric charge refers to the principle that the total electric charge in a closed system remains constant over time. This means that electric charge can be transferred or distributed within the system, but the total amount of charge remains the same.
Here are some key points about conservation of electric charge:
Current is defined as the rate at which charge flows through a circuit. It's represented by the equation:
** Conventional Current is defined as the direction a positive charge carrier will travel. This may seem strange to us since chemistry tells us that the electrons are the mobile part of the atom. Nevertheless, there are several advantages to choosing a positive direction, since that aligns with our choices in direction when it comes to electric fields and potential differences (see Unit 1). **
On a microscopic level, current is also related to the drift velocity (vd) of the individual charge carriers. Drift velocity can be thought of as the average velocity of each charge carrier as it moves through a wire. In the image below, we're looking at the path of the electron as it moves through a wire.
Drift velocity is the average velocity of a charged particle, such as an electron, in an electric field. It is the velocity at which the charged particle would move if it were not subjected to any other forces or collisions.
Here are some key points about drift velocity:
A metal wire has a cross-sectional area of 1 square millimeter and is subjected to an electric field of 1000 volts per meter. The wire is made of a metal with a drift velocity of 1 millimeter per second for electrons. Calculate the electric current flowing through the wire.
Solution:
To solve this question, you would need to use the formula for electric current, which is I = qA vd, where I is the electric current, q is the electric charge of the charged particles (in this case, electrons), A is the cross-sectional area of the wire, and vd is the drift velocity of the charged particles. Using the given values, the electric current flowing through the wire would be:
I = (1.6 x 10^-19 C) * (1 mm^2) * (1 mm/s) = 1.6 x 10^-19 C/s = 1.6 x 10^-15 A
Note that the electric current is very small because the drift velocity of the electrons is very small and the electric charge of an electron is also very small.
Circuit Symbols & Measuring Tools 🛠️
To easily draw circuits, we use a variety of symbols to represent common components. Here are a few common ones, and there are many many more that are not used in AP 2 (although if you become an electrical engineer you'll use them!)
On the other hand, an ammeter is designed to measure the current flowing through a part of the circuit. Because it's going to be connected in series with the component it's measuring, the internal resistance of the ammeter is designed to be very small. Hooking up an ammeter or voltmeter in the wrong configuration can lead to short circuits or a meter that doesn't function at all. Be careful in your lab experiments, and check first before you connect them.
An ammeter is a device used to measure the electric current flowing in a circuit, while a voltmeter is a device used to measure the electric potential difference, or voltage, across two points in a circuit.
Here are some key points about ammeters and voltmeters:
© 2024 Fiveable Inc. All rights reserved.