Browse By Unit
Daniella Garcia-Loos
Daniella Garcia-Loos
Gravitation may be the last and shortest unit, but you can see the applications of everything you've learned so far in this unit! From momentum to energy to forces, everything has accumulated to this point.
Unit 7 will cover approximately 6%-14% of the exam and should take around 5 to 10, 45-minute class periods to cover. The AP Classroom personal progress check has 10 multiple choice questions and 1 free response question for you to practice on.
When an object is large enough/massive enough it will create its own gravitational field which can interact with other objects that have gravitational fields.
** Newton's Law of Universal Gravitation: Every object attracts every other object in the universe with a force that is directly proportional to the product of their masses and inversely proportional to the square of the distance/radius between their centers.**
Newton's law of universal gravitation is a fundamental physical law that describes the attractive force between two masses. The law states that every point mass in the universe attracts every other point mass with a force that is proportional to the product of their masses and inversely proportional to the square of the distance between them. Here are some key points about Newton's law of universal gravitation:
You can see the equation form of the law below:
Essentially, this law is an extension of Newton's Third Law in which every action has an equal and opposite reaction.
Here's a diagram that illustrates the law:
If the object is on/near earth's surface:
This might be intuitive to some, but the further away the object is, the weaker the gravitational force acting on it from the other object will be. You can see this below:
When an object is dropped from a great height and falls towards the Earth's surface, the force of gravity acting on the object is variable. As the object falls, it accelerates due to the increasing force of gravity acting on it.
At the beginning of the fall, the object will have a relatively slow velocity, and its acceleration will be small. As the object falls further, its velocity increases, and its acceleration also increases. At some point, the object will reach its terminal velocity, which is the maximum velocity it can reach due to the resistance of the air.
As the object continues to fall, its velocity will remain constant and its acceleration will be zero. As the object approaches the Earth's surface, the force of gravity will decrease, and the object's velocity will decrease as well.
Finally, the object will hit the Earth's surface, and its motion will come to an end. The impact will be the result of the force of gravity acting on the object throughout its fall, and it will be affected by the height from which the object was dropped, and the resistance of the air.
Overall, the motion of an object falling towards the Earth's surface from a great height can be described as an acceleration followed by a constant velocity, then a deceleration before the impact.
<< Hide Menu
Daniella Garcia-Loos
Daniella Garcia-Loos
Gravitation may be the last and shortest unit, but you can see the applications of everything you've learned so far in this unit! From momentum to energy to forces, everything has accumulated to this point.
Unit 7 will cover approximately 6%-14% of the exam and should take around 5 to 10, 45-minute class periods to cover. The AP Classroom personal progress check has 10 multiple choice questions and 1 free response question for you to practice on.
When an object is large enough/massive enough it will create its own gravitational field which can interact with other objects that have gravitational fields.
** Newton's Law of Universal Gravitation: Every object attracts every other object in the universe with a force that is directly proportional to the product of their masses and inversely proportional to the square of the distance/radius between their centers.**
Newton's law of universal gravitation is a fundamental physical law that describes the attractive force between two masses. The law states that every point mass in the universe attracts every other point mass with a force that is proportional to the product of their masses and inversely proportional to the square of the distance between them. Here are some key points about Newton's law of universal gravitation:
You can see the equation form of the law below:
Essentially, this law is an extension of Newton's Third Law in which every action has an equal and opposite reaction.
Here's a diagram that illustrates the law:
If the object is on/near earth's surface:
This might be intuitive to some, but the further away the object is, the weaker the gravitational force acting on it from the other object will be. You can see this below:
When an object is dropped from a great height and falls towards the Earth's surface, the force of gravity acting on the object is variable. As the object falls, it accelerates due to the increasing force of gravity acting on it.
At the beginning of the fall, the object will have a relatively slow velocity, and its acceleration will be small. As the object falls further, its velocity increases, and its acceleration also increases. At some point, the object will reach its terminal velocity, which is the maximum velocity it can reach due to the resistance of the air.
As the object continues to fall, its velocity will remain constant and its acceleration will be zero. As the object approaches the Earth's surface, the force of gravity will decrease, and the object's velocity will decrease as well.
Finally, the object will hit the Earth's surface, and its motion will come to an end. The impact will be the result of the force of gravity acting on the object throughout its fall, and it will be affected by the height from which the object was dropped, and the resistance of the air.
Overall, the motion of an object falling towards the Earth's surface from a great height can be described as an acceleration followed by a constant velocity, then a deceleration before the impact.
© 2024 Fiveable Inc. All rights reserved.