Browse By Unit
Peter Apps
Peter Apps
A circuit is a closed loop of electrical current. If the loop is open or doesn’t allow the current to return to its starting position, electricity will not flow through the circuit and any devices on that partial loop will not work. Common ways of breaking a circuit include switches or blown/removed light bulbs.
Circuit components can be connected in either series or parallel. A series connection has 1 path between the components that all the current must travel through. A parallel circuit has 2 or more paths between the components. The current in a parallel circuit is split between all the available paths.
Kirchhoff's Junction Rule follows a similar logic process to the Loop Rule, except it uses conservation of charge instead of energy. In the circuit, the charge must be conserved since it’s a closed system. The current (rate of charge transfer) must be the same going into and out of a junction since there’s nowhere for the charge to disappear or appear from. In the image below, we can see that the total current (6A) is split at each junction, but the total remains the same.
Current Density is a third way of describing the current in terms of the electric field, E, and the material it is traveling through. In this case, we define current density as a vector, J->. We then relate the electric field to the current density through the equation below. (For a full derivation of this equation, check out this link). E = ρJ. ρ is the proportionality constant between E and J and is called the resistivity. Resistivity describes how much a given material restricts the current. Resistivity depends on temperature (higher temperatures result in a higher resistivity, but most tables give values for 20 C)
On the other hand, an ammeter is designed to measure the current flowing through a part of the circuit. Because it's going to be connected in series with the component it's measuring, the internal resistance of the ammeter is designed to be very small. Hooking up an ammeter or voltmeter in the wrong configuration can lead to short circuits or a meter that doesn't function at all. Be careful in your lab experiments, and check first before you connect them.
R1 is in series with R2 and R3. R_eq = 35ohms + 15ohms = 50ohms.
R = V / I = 20V / 0.8A = 25ohms
Step 2) Use our knowledge of resistors in series and parallel to find r
<< Hide Menu
Peter Apps
Peter Apps
A circuit is a closed loop of electrical current. If the loop is open or doesn’t allow the current to return to its starting position, electricity will not flow through the circuit and any devices on that partial loop will not work. Common ways of breaking a circuit include switches or blown/removed light bulbs.
Circuit components can be connected in either series or parallel. A series connection has 1 path between the components that all the current must travel through. A parallel circuit has 2 or more paths between the components. The current in a parallel circuit is split between all the available paths.
Kirchhoff's Junction Rule follows a similar logic process to the Loop Rule, except it uses conservation of charge instead of energy. In the circuit, the charge must be conserved since it’s a closed system. The current (rate of charge transfer) must be the same going into and out of a junction since there’s nowhere for the charge to disappear or appear from. In the image below, we can see that the total current (6A) is split at each junction, but the total remains the same.
Current Density is a third way of describing the current in terms of the electric field, E, and the material it is traveling through. In this case, we define current density as a vector, J->. We then relate the electric field to the current density through the equation below. (For a full derivation of this equation, check out this link). E = ρJ. ρ is the proportionality constant between E and J and is called the resistivity. Resistivity describes how much a given material restricts the current. Resistivity depends on temperature (higher temperatures result in a higher resistivity, but most tables give values for 20 C)
On the other hand, an ammeter is designed to measure the current flowing through a part of the circuit. Because it's going to be connected in series with the component it's measuring, the internal resistance of the ammeter is designed to be very small. Hooking up an ammeter or voltmeter in the wrong configuration can lead to short circuits or a meter that doesn't function at all. Be careful in your lab experiments, and check first before you connect them.
R1 is in series with R2 and R3. R_eq = 35ohms + 15ohms = 50ohms.
R = V / I = 20V / 0.8A = 25ohms
Step 2) Use our knowledge of resistors in series and parallel to find r
© 2024 Fiveable Inc. All rights reserved.